

ISO 9001:2015 Certified

TuffCut®XV Series XV5CB

For deep, dynamic milling applications

www.maford.com

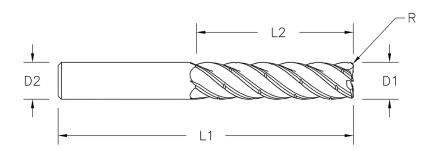
TuffCut®XV Series XV5CB

For deep, dynamic milling applications

Suitable materials

Applications

The XV5CB was developed for optimal metal removal rates in long axial engagement, dynamic milling strategies in both ISO P and ISO M material groups. Offered in both 3xD and 4xD length of cut options, the XV5CB increases productivity by utilizing its aggressive stepover capabilities while maintaining a stable and reliable process.



TuffCut®XV Series XV5CB

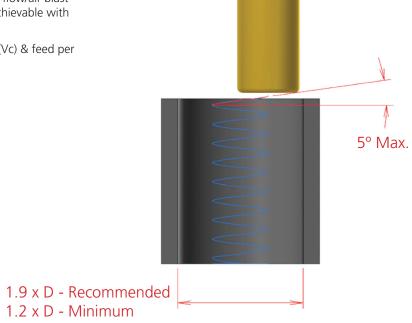
ALtima® Q		ALtima® Q		Diam	eter	Shank	OAL	Flute Length	Corner Radius
		Weldon Flat		D	1	D2 (h6)	L1	L2	R
Tool No.	EDP	Tool No.	EDP	Inch	Decimal	Inch	Inch	Inch	Inch
XV5CB37534AQ	08090	XV5CB37534AQW	08091	3/8	.3750	3/8	3	1-1/4	.030
XV5CB37544AQ	08094	XV5CB37544AQW	08095	3/8	.3750	3/8	3-1/2	1-5/8	.030
XV5CB50034AQ	08106	XV5CB50034AQW	08107	1/2	.5000	1/2	3-1/2	1-5/8	.030
XV5CB50044AQ	08112	XV5CB50044AQW	08113	1/2	.5000	1/2	4	2-1/8	.030
XV5CB62534AQ	08116	XV5CB62534AQW	08117	5/8	.6250	5/8	4	2-1/8	.030
XV5CB62544AQ	08120	XV5CB62544AQW	08121	5/8	.6250	5/8	5	2-5/8	.030
XV5CB75034AQ	08130	XV5CB75034AQW	08131	3/4	.7500	3/4	5	2-1/2	.030
XV5CB75044AQ	08134	XV5CB75044AQW	08135	3/4	.7500	3/4	6	3-1/8	.030

M.A. Ford follows the ANSI B94.19-1985 specifications when addding a Weldon flat to any inch size end mill. All request for locations not matching these specifications must be sent to customquotes@maford.com

XV5CB Series Recommended Cutting Data - Profile Milling at 3xD ADOC (ap) - Inch

	I S O	Hardness	Preferred		RWOC			End Mill Diameter (inch)						
Workpiece Material Group			o Possible x Not Possible			(ae)	_	(4)	3/8	1/2	5/8	3/4		
			Emulsion	Compressed air	MMS	5%	10%	15%	Multiply fz by this Factor based on ae. When finishing, use the standard fz per chart		e. Der chart			
						2.3	1.67	1.4		below. Only add chip thinning when roughing or semi-finishing.				
						Vc - SFM		fz - in/tooth						
Low Carbon Steels 12L14, 1018, A36	P	≤ 28 HRC	0	•	0	1150	985	820	.0023	.0030	.0038	.0045		
Medium Carbon Steels 1045, 1050, 1070		20.110.5	0	•	0	850	785	720	.0023	.0030	.0038	.0045		
Alloy Steels 4130, 4140, 4340		≤ 38 HRC	0	•	0	785	720	655	.0023	.0030	.0038	.0045		
Die / Tool Steels A2, D2, H13, P20		≤ 45 HRC	0	•	0	720	655	590	.0023	.0030	.0038	.0045		
Stainless Steels - Free Machining 303, 400 Series			≤ 28 HRC	•	•	0	675	590	500	.0023	.0030	.0038	.0045	
Stainless Steels - Austenitic 304, 316	M	S ZOTINC	•	х	0	525	460	330	.0018	.0024	.0030	.0036		
Stainless Steels - Difficult to Machine 13-8PH, Nitronics	_	45 UDG	•	х	0	360	295	230	.0015	.0020	.0025	.0030		
Stainless Steels - Precipitation Hardened 15-5 PH, 17-4 PH, 17-7 PH		≤ 45 HRC	•	•	0	525	460	330	.0018	.0024	.0030	.0036		
Titanium Alloys 6Al-4V	S	≤ 42 HRC	•	х	х	400	330	265	.0015	.0020	.0025	.0030		

Notes


- Cutting data provided should be considered advisory only. Adjustments may be necessary depending on the application, workpiece rigidity, machine tool, etc.
- The XV5CB should only be used in accurate tool holders with high gripping power. ER collet type holders are not recommended.
- For optimal performance in ISO S materials, ae = \leq 0.1 x D

XV5CB Series Recommended Cutting Data - Profile Milling at 3xD ADOC (ap) - Inch

Helical interpolation recommendations

- Under optimal conditions, with proper coolant flow/air blast techniques, up to 5° helical ramp angles are achievable with the XV5CB in most materials
- A reduction of 30-50% in both cutting speed (Vc) & feed per tooth (fz) are recommended
- Recommended hole diameter = 1.9 x D
- Minimum hole diameter = 1.2 x D

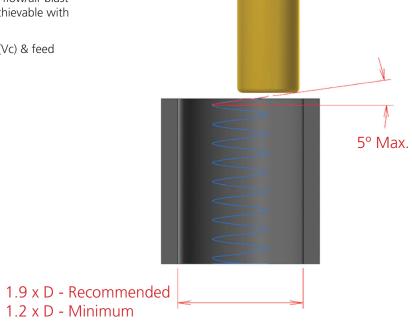
RWOC (ae)	Chip Thicknesss Compensation Factor
5%	2.30
7%	1.96
8%	1.84
10%	1.67
13%	1.49
15%	1.40

During profile milling with a radial width of less than 50% of the cutter diameter, the actual chip thickness at the cutting edge is less than the programmed chipload. The accompanying table shows the increase in chipload by given radial width percentage to adjust for chip thinning. Multiply your recommended chip thickness by the appropriate feed factor to establish the correct feed rate.

XV5CB Series Recommended Cutting Data - Profile Milling at 4xD ADOC (ap) - Inch

	I S O	Hardness	Preferred		RWOC		End Mill Diameter (inch)					
Workpiece Material Group			o Possible x Not Possible			(ae)	→	3/8	1/2	5/8	3/4	
			Emulsion	Compressed air	MMS	5%	10%	Multiply fz by this Factor based on ae. When finishing, use the standard fz per chart				
						2.3	1.67	below. Only add chip thinning when roughing or semi-finishing.				
						Vc -	SFM	fz - in/tooth				
Low Carbon Steels 12L14, 1018, A36	P	≤ 28 HRC	0	•	0	985	820	.0015	.0020	.0025	.0030	
Medium Carbon Steels 1045, 1050, 1070		20 UDG	0	•	0	785	720	.0015	.0020	.0025	.0030	
Alloy Steels 4130, 4140, 4340		≤ 38 HRC	0	•	0	720	655	.0015	.0020	.0025	.0030	
Die / Tool Steels A2, D2, H13, P20			≤ 45 HRC	0	•	0	655	590	.0015	.0020	.0025	.0030
Stainless Steels - Free Machining 303, 400 Series	M		. 20 UDC	•	•	0	590	500	.0015	.0020	.0025	.0030
Stainless Steels - Austenitic 304, 316		≤ 28 HRC	•	х	0	525	460	.0011	.0014	.0018	.0021	
Stainless Steels - Difficult to Machine 13-8PH, Nitronics		45.11-	•	х	0	295	230	.0009	.0012	.0015	.0018	
Stainless Steels - Precipitation Hardened 15-5 PH, 17-4 PH, 17-7 PH		≤ 45 HRC	•	•	0	525	460	.0011	.0014	.0018	.0021	
Titanium Alloys 6Al-4V	S	≤ 42 HRC	•	х	х	330	265	.0009	.0012	.0015	.0018	

Notes


- Cutting data provided should be considered advisory only. Adjustments may be necessary depending on the application, workpiece rigidity, machine tool, etc.
- The XV5CB should only be used in accurate tool holders with high gripping power. ER collet type holders are not recommended.
- For optimal performance in ISO S materials, ae = \leq 0.07 x D

XV5CB Series Recommended Cutting Data - Profile Milling at 4xD ADOC (ap) - Inch

Helical interpolation recommendations

- Under optimal conditions, with proper coolant flow/air blast techniques, up to 5° helical ramp angles are achievable with the XV5CB in most materials
- A reduction of 30-50% in both cutting speed (Vc) & feed per tooth (fz) are recommended
- Recommended hole diameter = 1.9 x D
- Minimum hole diameter = 1.2 x D

RWOC (ae)	Chip Thicknesss Compensation Factor
5%	2.30
7%	1.96
8%	1.84
10%	1.67

During profile milling with a radial width of less than 50% of the cutter diameter, the actual chip thickness at the cutting edge is less than the programmed chipload. The accompanying table shows the increase in chipload by given radial width percentage to adjust for chip thinning. Multiply your recommended chip thickness by the appropriate feed factor to establish the correct feed rate.

Where high performance is the standard®

Also available:

Safety Note

Always wear the appropriate personal protective equipment such as safety glasses and protective clothing when using solid carbide or HSS cutting tools. Machines should be fully guarded.

WARNING: This product can expose you to chemicals including nickel, cobalt, and lead, which are known to the State of California to cause cancer, and chemicals including lead which are known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

M.A. Ford® Mfg. Co., Inc.

7737 Northwest Blvd. Davenport, IA 52806

Tel: 563-391-6220 or 800-553-8024 e-mail: sales@maford.com www.maford.com

M.A. Ford® Europe Ltd.

650 City Gate London Road, Derby DE24 8WY United Kingdom

Tel: +44 (0) 1332 267960 Fax: +44 (0) 1332 267969 e-mail: sales@mafordeurope.com www.mafordeurope.com

M.A. Ford® Asia-Pacific Limited

Room 1709, Level 17 Millennium City 2 378 Kwun Tong Road Kowloon, Hong Kong

Tel: +852-2167-7150 Fax: +852-2167-8150

e-mail: sales@mafordeurope.com